

15/11/2018



#### ERS

### FACULTY DISCLOSURE

No financial interest in, or arrangement with, a company whose products or services are discussed in the lecture;

No other financial connections, direct or indirect, or other situations that might raise the question of bias in the work reported or the conclusions, implications, or opinions stated – including pertinent commercial or other sources of funding for the individual Speaker or for the associated department or organization, personal relationships, or direct academic competition.

european respiratory society every breath counts

### **INTRODUCTION**

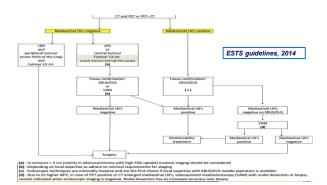
- · Lung cancer remains as the n° 1 cancer killer in Europe and United States
- Survival is directly related to stage at diagnosis

• Even patients with early-stage lung cancer have recurrence rates about 30%-40%, with a 5-year survival ranging dramatically from 50% to 90%, due to occult disease and inadequate nodal staging;

• Node-positive disease lowers 5-year survival to 27%.

Pathologic nodal stage is the strongest predictor of long-term survival in surgical NSCLC

## LYMPH NODE STAGING PATHWAYS


#### Imaging → CT scan and PET FDG

CT lymph node enlargement and/or PET FDG pathological uptake

#### Ŧ

Invasive mediastinal staging Endoscopic biopsy  $\rightarrow$  EBUS-TBNA / EUS Surgical biopsy  $\rightarrow$  mediastinoscopy / VATS

Diagnosis and Management of Lung Cancer, ACCP guidelines 2013




#### **MEDIASTINAL STAGING**

|                              | Lymph node                              |              | %                |      | - 20 10                                 | Expression/cubic pore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------|-----------------------------------------|--------------|------------------|------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Staging modality             | access                                  | Sensitivity* | Specificity*     | NPV* |                                         | Superior Rediastinal Nodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Noninvasive                  |                                         |              |                  |      |                                         | In Upper Parabachani (Ingel)     IL Upper Parabachani (Ingel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CT chest                     | All                                     | 55           | 81               | 83   | 123 - J                                 | ta Pre-essentar     29 Potestaninal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PET                          | All                                     | 80           | 88               | 91   | ALL | 48 Lower Parakasheat (right)     44 Lover Paratracheat parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PET-CT                       | All                                     | 62           | 90               | 90   |                                         | AP zon<br>• 1 Search<br>• 2 Search |
| Mediastinoscopy <sup>†</sup> | 2R, 2L, 4R, 4L,7                        | 78           | 100 <sup>‡</sup> | 91   | 1000 8-8 W                              | Infector Rediantical Nodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EBUST                        | 2R, 2L 4R, 4L, 7, 10R,<br>10L, 11R, 11L | 89           | 1001             | 91   | -                                       | T Takaning     Lower 2010     Processphaged     Processphaged     Processphaged     Processphaged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EUS                          | 41, 7, 5, 8, 9                          | 89           | 100 <sup>‡</sup> | 86   | E HW                                    | N, Nation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | 2R, 2L 4R, 4L, 7, 10R,                  | 91           | 100‡             | 96   | A A                                     | Akserfinterloðar zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EBUS/EUS                     | 10L, 11R, 11L, 5, 8, 9                  |              |                  |      |                                         | Peripheral zons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### ESTS guidelines, 2014

#### MEDIASTINAL STAGING



#### **EBUS - TECHNIQUE**

- → Outpatient setting
- → Moderate sedation
- → Extended hilar stations
- → «All in ONE» procedure
- → No complications
- → High diagnostic rate



#### ENDOBRONCHIAL ULTRASOUND

Table 1: Real-Time Endobronchial Ultrasound-guided Transbronchial Needle Aspiration for Systematic Mediastinal Staging of Non-Small Cell Lung Cancer

| First Author    | Year | N   | cStage | Sedation | Site Selection | Sites<br>Sampled | Technique        | ROSE | Complications       | Sensitivity<br>(%) |
|-----------------|------|-----|--------|----------|----------------|------------------|------------------|------|---------------------|--------------------|
| Yasufuku (35)   | 2005 | 105 | cN1-3  | Moderate | >5 mm SA       | 1.6              | Up to 5 passes   | Yes  | None                | 95*1*4             |
| Szlubowski (41) | 2009 | 226 | cN0-3  | Moderate | >5 mm SA       | 1.4              | 3-5 Passes       | No   | None                | 89.                |
| .ee (84)        | 2012 | 73  | cN0-3  | GA       | All accessible | 2.61             | Minimum 1 pass   | No   | Atrial fibrillation | 95 - 5             |
| Bauwens (42)    | 2008 | 106 | cN1-3  | Moderate | All accessible | 1.8              | NR               | No   | Pneumothorax        | 95,1.1             |
| Memoli (37)     | 2011 | 100 | cN1-3  | Moderate | All visible    | 2.3              | Up to 3 passes   | Yes  | None                |                    |
| Yasufuku (44)   | 2011 | 153 | cN0-3  | GA       | >5 mm SA       | 2.8              | Up to 5 passes   | Yes  | None                | 81*.5              |
| Nallace (63)    | 2008 | 138 | cN2-3  | Moderate | Visible LNs    | 1.4              | Minimum 3 passes | No   | None                | 69*1.1.5           |
| Yasufuku (28)   | 2006 | 102 | cN0-3  | Moderate | >5 mm SA       | 2.0              | Up to 5 passes   | Yes  | None                | 92****             |
| Herth (32)      | 2006 | 100 | cN0    | Moderate | >5 mm SA       | 1.2              | 4 Passes**       | No   | None                | 92                 |
| Jakajima (40)   | 2010 | 49  | cN1-3  | Moderate | >5 mm SA       | 2.6              | Up to 5 passes** | Yes  | None                | 92                 |
| Herth (27)      | 2008 | 97  | cN0    | GA       | >5 mm SA       | 1.6              | 2 Passes         | No   | None                | 892.5              |

Clinical Review. Kinsey et al, AJRCCM 2014

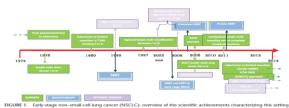
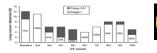
### **IEO EXPERIENCE**

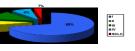
599 **EBUS for mediastinal staging** 

|              | HISTO neg   | HISTO pos | Total              |  |
|--------------|-------------|-----------|--------------------|--|
| EBUS neg     | 314         | 36        | 350                |  |
| EBUS pos     | 0<br>314    | 1017      | 1017               |  |
| Total        |             | 1053      | 1367               |  |
| Inadequate E | BUS N=40    |           |                    |  |
| Sensitivity  | = 1017/1053 | 06.6% 05% | CI: 95.3% to 97.6% |  |
| Specificity  | = 314/314   |           | CI: 98.8% to 100 % |  |
| PPV          | =1017/1017  |           | CI: 98.6% to 100 % |  |

Early-Stage Lung Cancer: 40s Anniversary

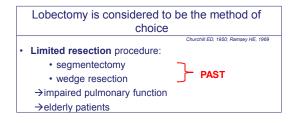
Silvia Novello, MD, PhD,\* Hisao Asamura, MD,† Jose Bazan, MD,‡ David Carbone, MD, PhD,‡ Peter Goldstraw, MB, FRCS, & Dominique Grunnerweild, MD, || Umberto Ricardi, MD,\* Johan Sunsteenkiste, MD, PhD? JTO 2014



FIGURE 1. Early-stag over the last 40 years.

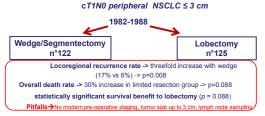
#### DIAGNOSTIC REVOLUTION FOR LUNG CANCER

Imaging advancement and early detection programs  $\rightarrow$  more than 70% stage I and II


- ➢ Modern medicine: from the "maximum tolerable treatment" to the "minimum effective treatment" → limited resections
- ➢ Less invasive treatment → VATS/Robot






# NSCLC stage I or II

- Limited resection -



Randomized Trial of Lobectomy Versus Limited Resection for T1 N0 Non–Small Cell Lung Cancer Lung Cancer Study Group (Prepared by Robert J. Ginsberg, MD, and Lawrence V. Rubinstein, (PhD)







World J Surg Oncol. 2014

Sublobar resection is equivalent to lobectomy for clinical stage 1A lung cancer in solid nodules

Nasser K. Altorki, MD." Rowena Yip, MPH.<sup>10</sup> Takaomi Hanaoka, MD.<sup>2</sup> Thomas Bauer, MD.<sup>2</sup> Ralph Aye, MD.<sup>3</sup> Leslie Kohman, MD.<sup>1</sup> Barry Sheppard, MD.<sup>2</sup> Richard Thurer, MD.<sup>3</sup> Shahriyour Andaz, MD. "Michael Smith, MD, Wulliam Mayfield, MD, <sup>12</sup> Fred Gramis, MD.<sup>1</sup> Robert Korst, MD.<sup>21</sup> Harvey Pass, MD.<sup>5</sup> Michaela Stramicka, MD,<sup>2</sup> Raja Flores, MD.<sup>3</sup> and Chaudia L. Hensche, PhD, MD.<sup>5</sup> for the FLECAP Investigators - <u>Harvey Passes</u> Annual Stramics Sup 201 J Thorac Cardiovasc Surg 2013

347 patients who underwent lobectomy (n=294) or sublobar resection (n=53) for non-small cell lung cancer manifesting as a solid nodule, from 1993 to 2011

| 1.0-          |                                                          | Propensity scoring was performed<br>using the same covariates                                                                                                                                                                                                                                                                               |
|---------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surrival<br>5 |                                                          | nodule diameter of ≤20 mm                                                                                                                                                                                                                                                                                                                   |
| ۰ <i>۳</i>    | with 294 patients treated<br>terval, 75-96) (P = .86). C | iii ems, 10-year Kaplan-Meier for 53 patients treated by sublobar resection comp<br>by lobectomy was 85% (95% confidence interval, 80-91) versus 86% (confidence<br>loss survival analysis showed no significant difference between sublobar resection<br>for propensity scores or when using propensity quintiles (P = 62 and P = 70, reg. |

82-93) version 45), and Cox survival analysis showed no significan either approach (P = .42 and P = .52, respectively)

#### CALGB 140503: A Randomized Phase III Trial of Lobectomy versus Sublobar Resection

for Small (< 2cm) Peripheral Non-Small Cell Lung Cancer

#### Fox N and Bauer T. Oncology Issue, 2008

#### 1297 pts

sared te in-

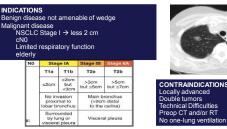
AIM: to evaluate the "non inferiority" in overall survival of segmentectomy compared to lobectomy in peripheral Stage IA NSCLC ≤ 2 cm

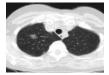
| INCLUSION CRITERIA      | EXCLUSION CRITERIA                        |     |
|-------------------------|-------------------------------------------|-----|
| Single tumor ≤2 cm      | Double cancers (<5yrs)                    |     |
| Suspected NSCLC cN0     | Prior CT/RT                               |     |
| Peripheral              | Locally advanced or<br>metastatic disease |     |
| Performance status 0 -2 | Age: < 18 yrs old                         | Lob |

Frozen section -> pNSCLC N1 and N2 sampling Ŧ RANDOMIZATION Wedge/ bectomy segmentectomy

A Phase III Randomized Trial of Lobectomy Versus Limited Resection for Small-sized Peripheral Non-small Cell Lung Cancer (JCOG0802/WJOG4607L) Natamura et al. Jan. J Clin Oncology 2010 Nakamura et al. Jap J Clin Oncology 2010

#### 1100 pts in 71 institutions within 3 yrs


AIM: to evaluate the "non inferiority" in overall survival of segmentectomy compared to lobectomy in peripheral Stage IA NSCLC ≤ 2 cm


| INCLUSION CRITERIA             | EXCLUSION<br>CRITERIA                              | RANDO                           | NIZATION                |        |         |
|--------------------------------|----------------------------------------------------|---------------------------------|-------------------------|--------|---------|
| Single tumors2 cm              | Pulmonary infections                               | Labortows I                     | Mada a la serie se a    |        |         |
| Suspected NSCLC cN0            | Double cancers (<5yrs)                             | Lobectomy +<br>N1/N2 dissection | Wedge/seg<br>N1/N2 diss |        | tomy +  |
| Peripheral                     | Pregnancy or breast feeding                        | N I/N2 UISSECTION               | N 1/N2 U155             | ection |         |
| Performance status 0 -1        | Fibrosis, severe emphysema                         | Frozen section -                | N1/N2 + or I            | lung m | argin + |
| Age: 20-79 yrs old             | Psicosis                                           | 1                               | 1                       |        |         |
| No thoracotomy/CT/RT           | Uncontrollable comorbilities                       | I                               | •                       |        |         |
| ppoFEV12800 ml<br>PaO2265 torr | Severe heart disease<br>Heart attack within 6 mths | Lob                             | ectomy                  |        |         |
|                                |                                                    |                                 |                         |        |         |

Dissection margin > 2 cm or at least = tumor diameter; if T > 2 cm or N+ -> CT

## **CONCLUSION**

- Limited resection -



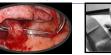


advanced puble tumors al Difficulties

### **NSCLC stage I or II** - Minimally invasive approach-

Posterolateral Lateral Muscle Sparing VATS Thoracotomy Thoracotomy

## VATS pulmonary resection


"We define VATS pulmonary resection as a video assisted, minimally access approach in which the surgeon operates primarily by watching the television monitor and uses no rib spreading throughout the entire procedure" Yim AP. Pearson, 2008

- Full Endoscopic Procedure (Monitor-based)
- Individual Dissection & Stapling of Hilar Structures
- No Rib Spreading

>

ROBOT

(Ann Thorac Surg 2008;99:2005-15) © 2005 by The Society of Thoracic Surgeons







- Benefits of VATS:
- Reduce in postoperative pain
- Rate of postoperative complications
- Better preserved respiratory functions Reduction of lenght of in-hospital stay
- Fastern return to previous activity level
- VATS = Standard approach for early stage lung

#### cancer in USA

Video-Assisted Thoracoscopic Lobectomy Is Less Costly and Morbid Than Open Lobectomy: A

**Retrospective Multiinstitutional Database Analysis** (Ann Thorac Surg 2012;93:027-32) © 2012 by The Society of Thoracic Surgeons — Robert J., McKenna, MD, and Daniel L., Miller, MD

Long term survival with thoracoscopic versus open lobectomy: propensity matched comparative analysis using SEER-Medicare database

BMJ 2014

Subroto Paul associate professor<sup>12</sup>, Abby J Isaacs senior analyst<sup>1</sup>, Tom Treasure professor<sup>3</sup>, Nasser K Altorki professor<sup>2</sup>, Art Sedrakyan associate professor and director<sup>12</sup>

In a matched analysis of 1195 patients in each treatment category, no statistical differences in 3 year overall survival, DFS, or cancer specific survival (OS: 70.6% v 68.1%, P=0.55;DFS: 86.2% v 85.4%, P=0.46; cancer specific survival: 92% v 89.5%, P=0.05).

|                                         |                          | Event        | ts (%)      |                            |                          |
|-----------------------------------------|--------------------------|--------------|-------------|----------------------------|--------------------------|
| too | All patients             | Thoracoscopy | Thoracotomy | / Hazard ratio<br>(95% CI) | Hazard ratio<br>(95% Cl) |
|                                         | Overall survival         | 357 (27.6)   | 1849 (39.2) |                            | 0.74 (0.66 to 0.83)      |
|                                         |                          |              |             |                            |                          |
|                                         | Cancer specific survival | 96 (7.4)     | 720 (15.3)  |                            | 0.47 (0.37 to 0.60)      |
|                                         | Disease-free survival    | 159 (12.3)   | 965 (20.5)  |                            | 0.58 (0.49 to 0.69)      |
|                                         | Propensity matched coh   | ort          |             |                            |                          |
| Log rank P=0.460                        | Overall survival         | 339 (28.3)   | 371 (31.1)  |                            | 0.90 (0.78 to 1.04       |
|                                         | Cancer specific survival | 90 (7.5)     | 120 (10.0)  |                            | 0.74 (0.56 to 0.97)      |
|                                         | Disease-free survival    | 149 (12.5)   | 171 (14.3)  | -+-                        | 0.86 (0.69 to 1.07)      |
| 1 2 3 4 5                               | 5                        |              |             | 0 1                        |                          |



## **ROBOTIC SURGERY**

To overcome vats limitations, micromechanic and robotic technology was introduced in the mid-1990.

Natural movements of the surgeon's hands are traslated into precise instrument movements inside the patient with tremor filtration. Three dimensional view offers a visual magnification that compensate the absence of haptic feedback

2



Robotic system can made advanced thoracoscopic surgery accessible to surgeons who do not have advanced videoendoscopic training Expand indications Advantages for patients

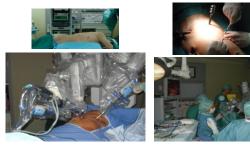


## **ROBOTIC LOBECTOMY**

#### - Literature-

| Lead Author     | Year | Pts      | OT<br>(min) | LOS<br>(Days) | Compl.<br>(%) | Mortality<br>(%) | Conversion<br>(%) |
|-----------------|------|----------|-------------|---------------|---------------|------------------|-------------------|
|                 |      |          |             |               |               |                  |                   |
| RAL             |      |          |             |               |               |                  |                   |
| Melfi           | 2004 | 107      | 220         | 5             | na            | 1                | na                |
| Park            | 2006 | 30       | 218         | 4.5           | 26            | 0                | 12                |
| Gharagozloo     | 2009 | 100      | 216         | 4             | 21            | 3                | 13                |
| IEO             | 2010 | 54       | 224         | 4.5           | 20            | 0                | 9.4               |
| Park, IEO, Pisa | 2011 | 325      | 210         | 5             | 25            | na               | 8                 |
| IEO             | 2012 | 91       | 213         | 5             | 20            | 0                | 10                |
| CPRL / CPRS     |      |          |             |               |               |                  |                   |
| Dylewski        | 2011 | 165 / 35 | 90          | 3             | 26            | 0                | 1.5               |
| Cerfolio        | 2011 | 106/16   | 132         | 2             | 27            | 0                | 10                |

CPRL – Complete port robotic lobectomy CPRS – Complete port robotic segmentectomy RAL – Robotic assisted lobectomy


## **ROBOTIC LOBECTOMY** - IEO tecnique -

Lateral position •

- Robot at the head posteriorly • •
- Four incisions including a small utility incision Camera arm: VII space mid axillary line •
- No rib spreading
- Individual ligation of hilar elements

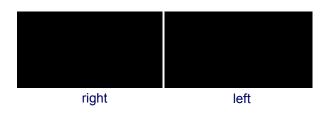


### PATIENTS AND ROBOT POSITIONING








RUL VEIN AND ARTERY





RUL BRONCHUS AND FISSURE

### LYMPHADENECTOMY



Four-arm robotic lobectomy for the treatment of early-stage lung cancer

Giulia Veronesi, MD,\* Domenico Galetta, MD,\* Patrick Maisonneuve, DipEng,\* Franca Melfi, MD," Ralph Alexander Schmid, MD,\* Alessandro Borri, MD,\* Fernando Vannucci, MD,\* and Lorenzo Spagelari, MD, Plib\*

| JTCVS 2010 |
|------------|
|------------|

|                | ROBOT (54) |        | OPEN (54) | p value | p value     |                |
|----------------|------------|--------|-----------|---------|-------------|----------------|
|                |            |        |           |         | I vs II+III | II+III vs Oper |
| Complications  | 33%        | 22%    | 6%        | 19%     | 0.04        | 0.77           |
| Operative time | 260        |        | 235       | 154     | 0.02        | <0.0001        |
| Postop days    | 6 days     | 5 days | 4 days    | 6 days  | 0.002       | 0.002          |
| Median N° LN   |            |        |           |         | 0.24        | 0.72           |

Learning curve include 18 pts, complications, postoperative days and operative time declines with experience
 Postoperative stay was SHORTEN after robotic than open procedures
 Complications and N<sup>1</sup> lymph nodes removed were comparable in open and robotic lobectomies



The median time of robotic intervention for completed operations decreased by 43 minutes between the first and the last two series of interventions (p=0.01)

#### Initial consecutive experience of completely portal robotic pulmonary resection with 4 arms

Robert J. Cerfolio, MD, FACS, FCCP, Ayesha S. Bryant, MD, MSPH, Loki Skylizard, MD, and Douglas James Minnich, MD, FACS

|                                                              | Robotic operation<br>(N = 196) | Rib- and nerve-sparing<br>thoracotomy (N = 318) | P value |
|--------------------------------------------------------------|--------------------------------|-------------------------------------------------|---------|
| Estimated blood loss (mL, median ± SD)                       | $30 \pm 26$                    | 90 ± 22                                         | .03     |
| Operative time (h, median ± SD)                              | $2.2 \pm 1.0$                  | $1.5 \pm 0.8$                                   | <.001   |
| No. of mediastinal (N2) lymph node stations removed (median) | 5                              | 5                                               | >.999   |
| No. of mediastinal (N2) lymph nodes removed (median)         | 12                             | 11                                              | .906    |
| No, of N1 lymph node stations removed (median)               | 3                              | 3                                               | >.999   |
| No. of N1 lymph node removed (median)                        | 5                              | 4                                               | .89     |
| Chest tabe duration (d, median and range)                    | 1.5 (1-6)                      | 3.0 (1-67)                                      | <.001   |
| Hospital stay (d, median and range)                          | 2.0 (1-7)                      | 4.0 (1-67)                                      | .01     |
| Morbidity (no.)                                              | 28 (27%)                       | 120 (38%)                                       | .05     |
| Operative mortality (no.)                                    | 0                              | 11 (3%)                                         | .11     |
| Verbal pain score 3 wk postoperatively (median and range)    | 2.5 (0-7)                      | 4.4 (0-8)                                       | .04     |

No difference in lymph node dissection

#### ROBOTIC LOBECTOMY FOR NON-SMALL CELL LUNG CANCER (NSCLC): LONG-TERM ONCOLOGIC RESULTS B.J. Park, F. Melfi, P. Maisonneuve, L. Spaggiari, R Da Silva, G. Veronesi Journal of Thoracic and Cardiovascular Surgery 2011 100 90 80 70 60 50 40 30 20 10 0,0 協 ÷. 5 à à Year À Ġ. Veare 325 176 (54%) 72 (22%) 41 (13%) 15 (5%) 21 (6%) Oncological results after 325 robotic IA IB IIA IIB IIIA lobectomies are comparable to open/ vats results. 90% 5 years survival in stage 1 disease

## **ROBOT vs VATS**

#### ADVANTAGES

- 1
- Intuitive movements Tremor filtration Increased degrees of freedom
- 1. 2. 3. 4.
- Motion scaling Stereoscopic vision Stable camera platform 4. 5. 6. 7.
- Equivalence between the dominant and 6.
- 8. 9.
- Equivalence between the don non-dominant hands Motion analysis Eye-hand-target alignment Possibly shorter learning curve 10.

#### DISADVANTAGES

#### 1

- Costs Loss of tactile feedback Limited instrumentation available 2. 3. 4. 5.

  - Limited instrumentation available Significant system set-up time Need of at least one experienced assistant Possible delayed response by the surgeon in case of catastrophic event



### - IEO experience -

257 patients with early stages primary lung malignancies

2007-2013 172 Robotics 26 cases/yy (single surgeon) 2010-2014 85 Vats 22 cases/yy (single surgeon)

Two surgeons : - Same age

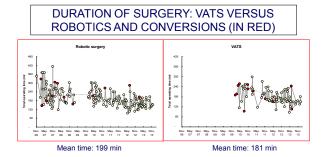
-

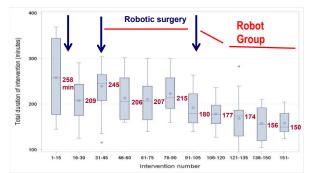
Similar experience in standard-open thoracic surgery

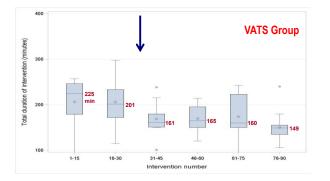
#### 4 ARMS ROBOTIC ASSISTED LOBECTOMY (PARK-MELFI MODIFIED TECHNIQUE)



#### 3 PORTS VATS APPROACH (DANISH HANSEN MODIFIED TECHNIQUE)



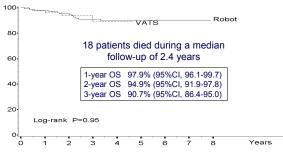


Camera same position during procedure N° 3 incisions Easier to convert in emergency Working channels on both side Both surgeons on abdominal site




## PATIENTS CHARACTERISTICS

| Characteristics     | Robotic surgery | VATS        | Pvalue  |
|---------------------|-----------------|-------------|---------|
| Total               | 172             | 85          |         |
| Age                 |                 |             |         |
| <60                 | 58              | 17          |         |
| 60-69               | 85              | 34          |         |
| 70+                 | 29              | 34          | 0.0002  |
| Median age, (range) | 64 (39-79)      | 67 (41-82)  | 0.001   |
| FEV (%)             |                 |             |         |
| Median (range)      | 93 (49-149)     | 98 (51-147) | 0.53    |
| Side                |                 |             |         |
| Left                | 73              | 26          |         |
| Right               | 98              | 59          | 0.08    |
| Lobe                |                 |             |         |
| Superior            | 103             | 55          |         |
| Medial              | 12              | 8           |         |
| Inferior            | 56              | 22          | 0.48    |
| Diameter            |                 |             |         |
| <10mm               | 36              | 2           |         |
| 10-19mm             | 76              | 29          |         |
| 20-29mm             | 34              | 21          |         |
| 230mm               | 25              | 31          | <0.0001 |
| Median, mm (range)  | 15 (2-80)       | 25 (4-75)   | <0.0001 |
| pT                  |                 |             |         |
| pT0-1               | 112             | 31          |         |
| pT2                 | 48              | 42          |         |
| pT3-4               | 8               | 6           | 0.0002  |
| pN                  |                 |             |         |
| , pND               | 142             | 64          |         |
| pN1                 | 13              | 13          |         |
| pN2                 | 13              | 8           | 0.14    |

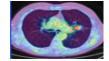







| NODAL UPSTAGE IN ROBOTIC AND VATS<br>RESECTION<br>COMPARISON BETWEEN VATS AND ROBOTIC |                   |                                |                                       |                   |                  |                           |                     |            |  |  |
|---------------------------------------------------------------------------------------|-------------------|--------------------------------|---------------------------------------|-------------------|------------------|---------------------------|---------------------|------------|--|--|
|                                                                                       |                   |                                | RESECTION FOR CANCER                  |                   |                  |                           |                     |            |  |  |
| F                                                                                     | RESE              |                                |                                       | R CAN             | NCER             | -                         | 70                  |            |  |  |
|                                                                                       | RESE              |                                | N FO                                  | R CAN             | NCER             | -                         | TS<br>20-29<br>mm   | ≥30<br>mm  |  |  |
| F                                                                                     | <10<br>mm<br>2/34 | Robotic<br>10-19<br>mm<br>3/68 | <b>surgery</b><br>20-29<br>mm<br>4/28 | ≥30<br>mm<br>8/22 | <10<br>mm<br>0/2 | VA<br>10-19<br>mm<br>4/28 | 20-29<br>mm<br>4/18 | mm<br>7/25 |  |  |
| Procedure                                                                             | <10<br>mm         | Robotic<br>10-19<br>mm         | surgery<br>20-29<br>mm                | ≥30<br>mm         | <10<br>mm        | VA<br>10-19<br>mm         | 20-29<br>mm         | mm         |  |  |

# Lymph node upstage appears to be similar between the two techniques


#### OVERALL SURVIVAL AFTER ROBOTIC SURGERY AND VATS



## CONCLUSION

- Minimally invasive approach -

| nt dis<br>CLC<br>tasta | ise req<br>sease<br>Stage<br>ases (n                                                        | l<br>ot ame         | obectomy<br>nable to s                          |                  |
|------------------------|---------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------|------------------|
| NO                     | Stag                                                                                        | ge IA               | Stage IB                                        | Stage IIA        |
|                        | T1a                                                                                         | T1b                 | T2a                                             | T2b              |
|                        | s2cm                                                                                        | >2cm<br>but<br>≤3cm | >3cm<br>but s5cm                                | >5cm<br>but ≲7cm |
|                        | No invasion<br>proximal to<br>lobar bronchus<br>Surrounded<br>by lung or<br>visceral pleura |                     | Main bronchus<br>(>2cm distal<br>to the carina) |                  |
| e:                     |                                                                                             |                     | Visceral pleura                                 |                  |



CONTRAINDICATIONS Chest wall Invasion N+ tumors Technical Difficulties (big lesions, fused fissures, vascularity anomalies) Preop CT and/or RT No one-lung ventilation

## **IEO ALGORITHM**



## WHAT IS THE FUTURE?

Sublobar Resection, Radiofrequency Ablation or Radiotherapy in Stage I Non-Small Cell Lung Cancer

Seper Saft\* Geraldine Rauch\* Jan op den Winket\* Josef Kunz<sup>b</sup> Thomas Schneider® Marc Bischof\* Claus Peter Heussel<sup>b, F</sup> Peter E, Huber Felix J.F. Herth<sup>c, F</sup> Hendrik Dienemann<sup>4, F</sup> Hans Hoffmann<sup>4</sup>

116 patients with histologically proven clinical stage I NSCLC who were treated with sublobar resection (SLR; n = 42), radiofrequency ablation (RFA; n = 25) or radiotherapy (RT; n =49) between 2009 and 2013



#### EARLY STAGES: STEREOTACTIC RADIOTHERAPY

RADIOTHERAPY TECHINQUE TO DELIVER HIGH DOSE RADIATION TO THE TARGET

STEEP DOSE GRADIENT HIGH PRECISION HYPOFRACTIONATION TRACKING OF MOVING LESIONS



|                               |                      | HERAPY OF PRI<br>SULTANT MEETI<br>ENERGY AG | NG OF THE INTE       |                  |                       |
|-------------------------------|----------------------|---------------------------------------------|----------------------|------------------|-----------------------|
|                               |                      | WULF, M.D., INGMA                           |                      |                  |                       |
| Frank                         | ZIMMERMANN, M.D.     | IGOR STOJKOVSKI,                            | M.D., AND BRANEL     | AV JEREMIC, M.D. |                       |
|                               |                      |                                             |                      |                  | Nagata IJROBP 201     |
| Ta                            | ble 1. Local control | rates of stereotactic r                     | adiotherapy for prim | ary lung cancer  |                       |
| Study                         | Total dose (Gy)      | Daily dose (Gy)                             | Reference point      | Local control    | Median follow-up time |
| Jematsu et al., 2001 (21, 23) | 50-60                | 10                                          | 80% margin           | 94%(47/50)       | 36 months             |
| arimoto et al., 1998 (24)     | 60                   | 7.5                                         | Isocenter            | 92%(22/24)       | 24 months             |
| immerman et al., 2003 (19)    | 60                   | 20                                          | 80% margin           | 87%(30/37)       | 15 months             |
| mimaru et al., 2003 (25)      | 48-60                | 6-7.5                                       | Isocenter            | 80%(20/25)       | 17 months             |
| Vulf et al., 2004 (26)        | 45-56.2              | 15-15.4                                     | 80% margin           | 95%(19/20)       | 10 months             |
| lagata et al., 2005 (28)      | 48                   | 12                                          | Isocenter            | 97%(44/45)       | 30 months             |
| ee et al., 2003 (27)          | 30-40                | 10                                          | 90% margin           | 90%(8/9)         | 21 months             |
| akiris et al., 2009 (29)      | 60-66                | 20-23                                       | 80% margin           | 88%(70)          | 50 months             |
| laumann et al., 2009 (30)     | 45                   | 15                                          | 67% margin           | 92%(57)          | 35 months             |
|                               | 60                   | 20                                          | 80% margin           | 98%(54/55)       | 36 months             |

Local Control: 80-98% 2

2yOS: 50-80%

MEDIAN FUP: 10-50 m

## **NSCLC** locally advanced

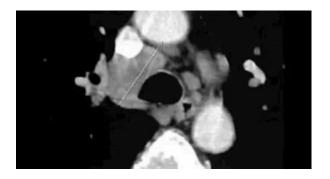
- ► T4 → tumor invading any of the following:
   Trachea, Carina, Great vessels
  - Trachea, Carina, Great vessels
     Mediastinum, Heart, Esophagus
  - Mediastinum, Heart, Esophag
     Vertebral body
- ≻ N2

A DENSITY OF A DEN

«Extended resection and multimodality treatment »

## **Extended resection for T4**

| Table 1<br>Selected summary of e    | xtended resections of T4 NSCLC                                                                                                 |          |                  |                  |                                   |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------|------------------|------------------|-----------------------------------|
| Reference                           | T4 Sites of Disease                                                                                                            | Patients | Morbidity<br>(%) | Mortality<br>(%) | Overall<br>Survival<br>(% at 5 y) |
| Burt et al, <sup>6</sup> 1987       | Aorta, pulmonary artery, esophagus                                                                                             | 225      | NR               | 2.7              | 9                                 |
| Tsuchiya et al,7 1994               | Aorta, left atrium, pulmonary artery,<br>SVC                                                                                   |          | NR               | NR               | 13                                |
| Martini et al, <sup>®</sup> 1994    | Aorta, left atrium, pulmonary artery,<br>SVC, esophagus, trachea, spine                                                        | 102      | NR               | 6                | 19                                |
| Bernard et al, <sup>®</sup> 2001    | Aorta, left atrium, pulmonary artery,<br>SVC, esophagus, carina, spine                                                         | 77       | NR               | NR               | 21*                               |
| Pitz et al, <sup>10</sup> 2003      | Aorta, left atrium, pulmonary artery,<br>SVC, esophagus, trachea, carina,<br>spine                                             | 89       | NR               | 19               | 19                                |
| Ratto et al, <sup>11</sup> 2004     | Left atrium                                                                                                                    | 19       | 37               | 0                | 14                                |
| Ohta et al,12 2005                  | Aorta                                                                                                                          | 16       | 31               | 12.5             | 48                                |
| Yildizeli et al, <sup>13</sup> 2008 | Aorta, left atrium, pulmonary arten<br>SVC, esophagus, carina, spine,<br>subclavian arteny/vein, carotid<br>artery, chest wall |          | 35               | 4                | 38                                |
| Wu et al,14 2009                    | Left atrium                                                                                                                    | 46       | 52               | 0                | 22                                |
| Yang et al, <sup>15</sup> 2009      | Aorta, left atrium, pulmonary artery,<br>SVC, esophagus, trachea, carina,<br>spine                                             | 146      | 53               | 3.1              | 23                                |
| Spaggiari et al, <sup>16</sup> 2013 | Aorta, left atrium, SVC, carina                                                                                                |          | 34               | 5                | 23                                |
| Galvaing et al, <sup>17</sup> 2014  | Left atrium                                                                                                                    |          | 53               | 11               | 44                                |


Thorac Surg Clin 2014

## **Extended resection for T4**

ightarrow consecutive serie with more than 150 patients in the last decade



| Autho                               | r                          | Period                 | N°      | n/year      | Morbility | Mortality   | 5 yrs OS |
|-------------------------------------|----------------------------|------------------------|---------|-------------|-----------|-------------|----------|
| Spaggiari <sub>2013</sub>           |                            | 1998-2010              | 167*    | 13.5        | 34.1%     | 4.8%        | 23%      |
| Dartevelle <sub>2008</sub>          |                            | 1986-2001              | 271**   | 18          | 35%       | 4%          | 38%      |
| * No sulcus tum<br>**126 superior s |                            | r                      |         |             |           |             |          |
|                                     | Aut                        | hor                    | svc     | carena      | aorta     | Left atrium |          |
|                                     | Spaggiar                   | 2013                   | 43(34%) | 33 (26%)    | 14(11%)   | 35(28%)     |          |
|                                     | Dartevelle <sub>2008</sub> |                        | 39(27%) | 92(63%)     | 2(1.3%)   | 6(4%)       |          |
|                                     |                            |                        |         |             |           |             |          |
|                                     | Author                     |                        |         | Neoadjuvant |           | ivant       |          |
|                                     | Spag                       | ggiari <sub>2013</sub> | (       | 86(69%)     | 48(3      | 38%)        |          |
|                                     | Dart                       | evelle <sub>2008</sub> |         | 75(28%)     | 139(      | 51%)        |          |



Survival After Extended Resection for Mediastinal Advanced Lung Cancer: Lessons Learned on 167 Consecutive Cases Internet Specification MD, PhD, Advin Treatmen, MD, Monte Casearia, MD, Roberto Caseari, MD, Pinnesco Petrella, MD, Patrick Maisonneuve, Eng. and Domentic Caseari, MD, PhD

 Between 1998 and 2010, 167 patients with involvement of one or more mediastinal organs underwent operations with the intent to perform ER

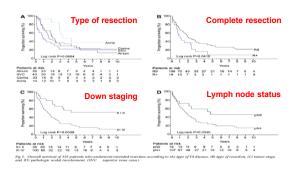
 Access
 108 (86.4%)

 Identification
 108 (86.4%)

 Hemidamshell
 11 (8.8%)

 Posterolateral thoracothomy
 3 (2.4%)

 Anterolateral
 3 (2.4%)


 SVC
 42 explorative thoracotomies

 SVC
 43

 SVC-carena
 18

 14
 11.2%

Ann Thorac Surg 2013



|                      |                                              | REVIEW ARTICLE                                                                                                                        |
|----------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                      | Surgical Approach                            | to Locally Advanced Non-Small Cell<br>Lung Cancer                                                                                     |
|                      | Jessica S. Dor                               | nington, MD, MSCr, and Harvey I. Pass, MD Cancer J 2013                                                                               |
| TABLE 1. Role        | of Surgery in Treatment of Locally Ac        | dvanced Non-small Cell Lung Cancer, by TNM Subset                                                                                     |
| Stage                | TNM Subset                                   | Role for Surgery                                                                                                                      |
| ша                   | T4N0M0<br>T3N1M0<br>T4N1M0                   | Primary therapy, with adjuvant chemotherapy                                                                                           |
| T4N0-1 TUMO          | RS                                           |                                                                                                                                       |
| heart, great vessels | s, mediastinum, esophagus, spine, or trachea | Once considered unresectable                                                                                                          |
|                      |                                              | Resection generally limited to patients N0 \ N1                                                                                       |
|                      |                                              | Technically challenging with increased morbidity                                                                                      |
|                      |                                              | T4N2 tumors have poor 5-year survival rates and operative mortality<br>exceeds 5-year survival, and surgery is generally discouraged. |

## But...

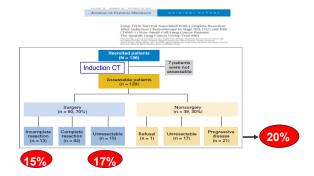
Many patients experience postoperative complications after extended resections → about 50%

Only few patients complete adjuvant chemotherapy protocols

## Induction therapy WHY?

- Low compliance of adjuvant chemotherapy
- High rate of systemic recurrences after extended resection
- Small number of extended resection for a disease too much advanced
- · High rate of positive margins after resection

## **Theoretical Advantages**

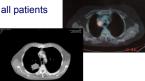

- early control of systemic micrometastasis
- · downstaging of unresectable disease
- tumor shrinkage
  - increase resectability
  - increase the rate of complete resection
  - reduce the rate of extended resections
  - spare more parenchyma
- · better compliance than adjuvant therapy
- · drug delivered to locoregional disease through an intact vascular bed

## **Theoretical Disadvantages**

- delay in local control
  - Local progression
  - Unresectable disease
- · increase of surgical difficulties
- increase morbidity / mortality
  - Bronchial fistulae
  - Respiratory complications

## Induction treatment for T4 extended resection IEO experience

| Type of resection  | Induction CT |
|--------------------|--------------|
| Superior vena cava | 69%          |
| Aorta              | 72.2%        |
| Left atrium        | 67%          |
| Vertebrae          | 52.6%        |




## **NSCLC stage IIIA-N2**

- Patients with stage IIIA-N2 tumors represent a heterogeneous group with different clinical presentation, and both prognosis and treatment strategies based on the extension of the disease to the mediastinum
- Chemotherapy followed by surgery in highly selected patients with or without postoperative radiotherapy suggested an improvement in resectability and in long term survival up to 54% at 5-year over singlemodality therapy
- Numerous non-randomized phase II and phase III trials using induction chemotherapy have been reported in the literature

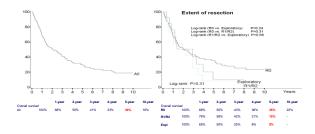
## **BIAS OF THE TRIALS**

- · Different stages from IB to IIIA
- · Patients' heterogeneity (occult N2, minimal or bulky)
- No preoperative N+ staging in all patients
- Single and multiple stations
- · Downstaging or not?

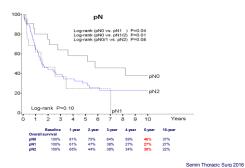


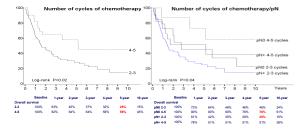
#### Induction chemotherapy in stage IIIA/B NSCLC data from international literature

| Author         | n°  | pCR     | Resectability | Morbidity | Mortality | 5-yr OS       |
|----------------|-----|---------|---------------|-----------|-----------|---------------|
| Galetta,'03    | 39  | 42%     | 54%           | 22%       | 0         | 38%           |
| Ichinose,'03   | 27  | 19%     | 81%           | 36%       | 4%        | 56% (3-yr)    |
| Regnard,'05    | 65  | NR      | 98%           | 51%       | 8%        | 26%           |
| Dartevelle,'08 | 271 | NR      | NR            | 35%       | 4%        | 38%           |
| Kappers,'11    | 19  | 37%     | 100%          | 47%       | NR        | 33%           |
| Daly,'11       | 110 | 43%     | 92%           | NR        | 3%        | 21% (CSM 40%) |
| Kawaguchi,'12  | 407 | NR      | 86%           | NR        | NR        | 50%           |
| Lococo, 12     | 71  | 27%     | 78%           | 27%       | 3%        | 64%           |
| Spaggiari,'13  | 167 | NR      | NR            | 34%       | 4.8%      | 23%           |
|                | 1   | Morbid  | lity          | 36% (18%  | 5 - 51%)  |               |
| Only T4        |     | Mortal  | ity           | 3,8% (0%  | o - 4.8%) |               |
| Only 14        |     | 5 yr Su | urvival       | 38% (23%  | 6 - 64%)  |               |


| IEO experience                                                                                                                  |                    |              |                         |                                                                                                                 |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                 | 1998-2             | <b>013</b> s | emin Thoracic Surg 2016 | Contraction of the second s |  |  |  |  |
| 141 patients with "potentially resectable" pN2 NSCLC (122 nediastinoscopy or 19 EBUS-TBNA) underwent surgery after induction CT |                    |              |                         |                                                                                                                 |  |  |  |  |
| · · · ·                                                                                                                         | s underwent cispla |              |                         |                                                                                                                 |  |  |  |  |
|                                                                                                                                 | f induction CT     |              | nber of cycles          |                                                                                                                 |  |  |  |  |
| Platinum/gemcitabine                                                                                                            | (107/141) 76%      | 2-3          | 103/141(73%)            |                                                                                                                 |  |  |  |  |
|                                                                                                                                 |                    |              |                         |                                                                                                                 |  |  |  |  |
| Platinum/other                                                                                                                  | (34/141) 24%       | More than 3  | 38/141(27%)             |                                                                                                                 |  |  |  |  |

#### **Results**


141 patients with "potentially resectable" pN2 NSCLC underwent surgery after induction CT


| C stage           | All<br>141  | Resected<br>126 | Explorative<br>15 | • | pN0 down staging in 17%,<br>pN1 down staging in 13%<br>persistent pN2 in 70% |
|-------------------|-------------|-----------------|-------------------|---|------------------------------------------------------------------------------|
| Illa              | 127 (90.1%) | 115 (91.3%)     | 12 (80.0%)        |   |                                                                              |
| IIIb              | 14 (9.9%)   | 11 (8.7%)       | 3 (20.0%)         |   |                                                                              |
| P stage           |             |                 |                   |   |                                                                              |
| Complete response | 8 (5.7%)    | 8 (6.3%)        |                   |   |                                                                              |
| la/lb             | 9 (6.4%)    | 9 (7.1%)        | -                 |   |                                                                              |
| lla/llb           | 16 (11.3%)  | 16 (12.7%)      | -                 |   |                                                                              |
| IIIa              | 84 (59.6%)  | 84 (66.7%)      | -                 |   |                                                                              |
| IIIb              | 24 (17.0%)  | 9 (7.1%)        | 15 (100.0%)       |   |                                                                              |

All patients underwent explorative thoracotomy, incomplete resection (R1 or R2) or persistent N2 underwent adjuvant radiotherapy with mean dose of 52 Gy (range 29-65) or adjuvant chemotherapy



Semin Thoracic Surg 2016





Semin Thoracic Surg 2016

#### **IEO ALGORITHM**



#### **RESTAGING!**

- A restaging after 2-3 cycles becomes important to understand if they are good responders or not, and whether to continue chemotherapy or candidate them to surgery
- A restaging after chemotherapy should be better performed with EBUS-TBNA which is able to investigate also the N1 lymph node stations

 $\rightarrow$  pN1 patients (partial response to chemotherapy) have a bad survival rate, similar to persistent N2

## CONCLUSION

#### - Locally advanced stage -

- T4 resections are feasible but selection of the candidate is paramount
- The factors that were found to possibly affect survival were the completeness of resection, the lymph node status
- Induction therapy may improve patient's selection avoiding unnecessary surgery in more than 20% of the cases

## CONCLUSION

- Locally advanced stage -

- In patients stage IIIA-N2 chemotherapy played an essential role in the sterilization of lymph node metastasis resulting in a significant increase in survival when compared with patients in whom the nodal down staging was not the case N+ (46% vs. 28% at 5 years)
- Number of cycles of chemotherapy were strictly related to a better survival. In patients
  with "potentially resectable" pN2 disease we reach up to 76% survival at 5 yrs by using 45 cycles of third-generation induction chemotherapy, with an acceptable morbidity and
  mortality
- ➔ it will be essential to investigate the group of best survivors in term of genetic and molecular target such as MiRNA identifing possible "pretreatment prognostic factor" as predictive signature of chemotherapy efficacy (ongoing study).

## WHAT ABOUT STAGE IIIB?

## Role for Surgical Resection in the Multidisciplinary Treatment of Stage IIII Non–Small Cell Lung Cancer

Matthew J. Bott, MD, Aalok P. Patel, MD, Traves D. Crabtree, MD, Daniel Morgensztern, MD, Clifford G. Robinson, MD, Graham A. Colditz, MD, Salma Viaage, MD, Daniel Kreisel, MD, PhSL A. Saha Karponicka, MD, G. Alexander Patterson, MD, Stephen Brocherick, MD, Biyan F. Miyers, MD, and Varam Puri, MD Departments of Surgery, Division of Cardinthoraci University School of Medicine, St. Lonis, Minouri

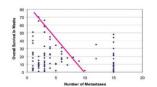




## **Oligometastatic NSCLC**

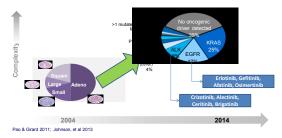
→ distinct cohorts

- 'oligometastases' = diagnosed with oligometastatic disease
- 'oligorecurrence' = relapsed oligometastatic disease
- 'oligoprogression' = status after cytoreductive therapy • → cohorts probably have different prognoses




Courtesy of J. Vansteenkiste (ELCC 2016)

•

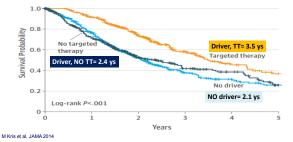

### **Oligometastatic NSCLC** → prognosis





Courtesy of J. Vansteenkiste (ELCC 2016)

#### TREMENDOUS PROGRESS IN CHARACTERISATION OF LUNG CANCER






Advanced NSCLC personalized treatment → the TKI progression dilemma

Courtesy of J. Vansteenkiste (ELCC 2016)

Using Multiplexed Assays of Oncogenic Drivers in Lung Cancers to Select Targeted Drugs



© ERS CONCLUSIONS

#### Surgery is:

- Gold standard for early stage lung cancer
- Part of a multimodality treatment for locally advanced NSCLC
- Diagnostic and palliative tools for not surgical or metastatic patients
   wurgean respiratory society every breath counts

