

Prof. Lorenzo Spaggiari Division of Thoracic Surgery European Institute of Oncology Departement of Oncology and Hemato-oncology University of Milan, Italy

Nowadays, lung cancer surgery is more minimally invasive due to the screening programs and to the early detection of lung cancer

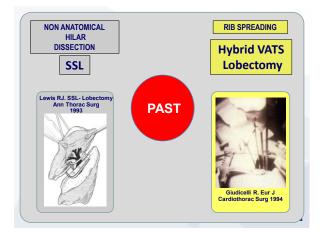
Evolution of Surgical Treatment

Posterolateral

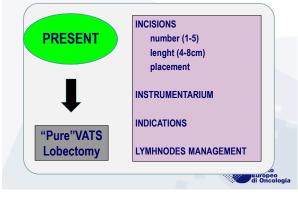
Thoracotomy

Thoracotomy

VATS pulmonary resection


"We define VATS pulmonary resection as a video assisted, minimally access approach in which the surgeon operates primarily by watching the television monitor and uses no rib spreading throughout the entire procedure"

- AP. Pearson, 2008
- Full Endoscopic Procedure (Monitor-based) Individual Dissection & Stapling of Hilar Structures
- ≻ No Rib Spreading



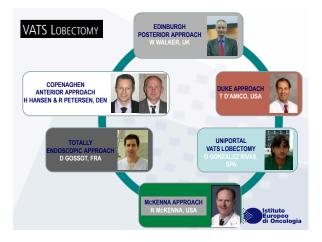
DEFINITION of VATS LOBECTOMY

Surgery for Early-Stage Non-Small Cell Lung Cancer: A Systematic Review of the Video-Assisted Thoracoscopic Surgery Versus Thoracotomy Approaches to Lobectomy

Bryan A. Whitson, MD, PhD, Shawn S. Groth, MD, Susan J. Duval, PhD, Scott J. Swanson, MD, and Michael A. Maddaus, MD

Benefits of VATS:

- Reduce in postoperative pain
- Rate of postoperative complications
- Better preserved respiratory functions
- Reduction of lenght of in-hospital stay
- Fastern return to previous activity level


VATS = Standard approach for early stage lung cancer in USA

(Ann Thorac Surg 2008;86:2008–15) © 2008 by The Society of Thoracic Surgeons

Video-Assisted Thoracoscopic Lobectomy Is Less Costly and Morbid Than Open Lobectomy: A Retrospective Multiinstitutional Database Analysis

(Ann Thorac Surg 2012;93:1027-32) © 2012 by The Society of Thoracic Surgeons Scott J. Swanson, MD, Bryan F. Meyers, MD, Candace L. Gunnarsson, EdD, Matthew Moore, MHA, John A. Howington, MD, Michael A. Maddaus, MD, Robert J. McKenna, MD, and Daniel L. Miller, MD

ROBOTIC SURGERY

To overcome vats limitations, micromechanic and robotic technology was introduced in the mid-1990. Natural movements of the surgeon's hands are traslated into

precise instrument movements inside the patient with tremor filtration. Three dimensional view offers a visual magnification that

compensate the absence of haptic feedback

Robotic system can made advanced thoracoscopic surgery accessible to surgeons who do not have advanced videoendoscopic training Expand indications

Advantages for patients

ROBOTIC SURGERY

Feasible?

Acceptable learning curve?

Adequate oncological results?

VATS or Robotic resection?

Europeo di Oncologia

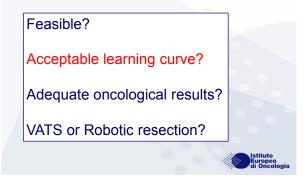
Lead Author	Year	Pts	OT (min)	LOS (Days)	Compl. (%)	Mortality (%)	Conversion (%)
Melfi	2004	107	220	5	na	1	na
Park	2006	30	218	4.5	26	0	12
Gharagozloo	2009	100	216	4	21	3	13
Dylewski	2011	165 / 35*	90	3	26	0	1.5
Cerfolio	2011	106 /16*	132	2	27	0	10
IEO	2010	54	224	4.5	20	0	9.4
Park, IEO, Pisa	2012	325	210	5	25	na	8
IEO	2012	91	213	5	20	0	10
Meyer	2012	185	211	4	17	2	2
Adam	2014	120	242	4.7	na	0	3.3
Melfi	2014	68/160	222/166	4.4/3.8	na	1/0	10/6
Velez-Cubian	2015	104/104	179/172	6/4	na	3/0	7/13
IEO	2018	339	192	5	25.6	0	6.5
* segmentectomies	5						
	_						Istituto Europeo

ROBOTIC LOBECTOMIES

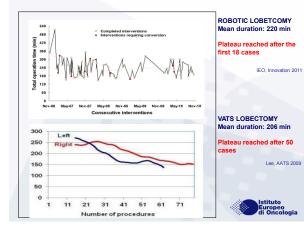
ROBOTIC LOBECTOMY - IEO tecnique -

- Lateral position
 Robot at the head posteriorly
 Four incisions including a
 small utility incision
 Camera arm: VII space mid
 axillary line
 No ith execution •
- No rib spreading Individual ligation of hilar elements •

Right upper lobectomy


LYMPHADENECTOMY

Spaggiari L. Ann Thorac Surg. 2011

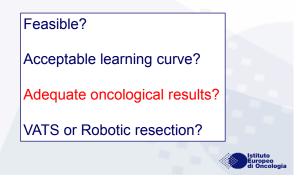

ROBOTIC SURGERY

LEARNING CURVE

ROBOTIC AND VATS LOBECTOMIES

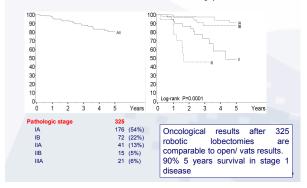
Author	Year	Operation	No. of operations
Melfi	2008	Robotic lobectomy	20
Gharagozloo	2009	Robotic lobectomy	20
Louie	2012	Robotic lobectomy	6
IEO	2010	Robotic lobectomy	18
IEO	2011	VATS lobectomy	30-50
Lee	2009	VATS lobectomy	30-50
Belgers	2010	VATS lobectomy	25-30
Petersen	2010	VATS lobectomy	50

Four-arm robotic lobectomy for the treatment of early-stage lung cancer


Giulia Veronesi, MD,* Domenico Galetta, MD,* Patrick Maisonneuve, DipEng,^b Franca Melfi, MD,^c Ralph Alexander Schmid, MD,^d Alessandro Borri, MD,* Fernando Vannucci, MD,* and Lorenzo Spaggiari, MD, PhD^{xe} JTCVS 2010

	ROBOT (54)		OPEN (54)	p value	p value	
					I vs II+III	II+III vs Oper
Complications	33%	22%	6%	19%	0.04	0.77
Operative time	260		235	154	0.02	<0.0001
Postop days	6 days	5 days	4 days	6 days	0.002	0.002
Median N° LN					0.24	0.72

Learning curve include 18 pts, complications, postoperative days and operative time declines with experience
 Postoperative stay was SHORTEN after robotic than open procedures


- 3) Complications and N° lymph nodes removed were comparable in open and robotic lobectomies

ROBOTIC SURGERY

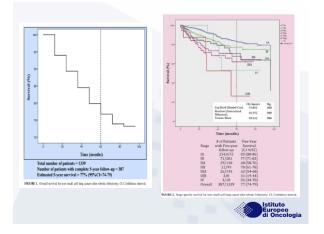
ROBOTIC LOBECTOMY FOR NON-SMALL CELL LUNG CANCER (NSCLC): LONG-TERM ONCOLOGIC RESULTS B.J. Park, F. Melfi, P. Maisonneuve, L. Spaggiari, R Da Silva, G. Veronesi Journal of Thoracic and Cardiovascular Surgery 2011

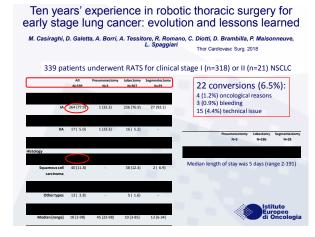
Initial consecutive experience of completely portal robotic pulmonary resection with 4 arms

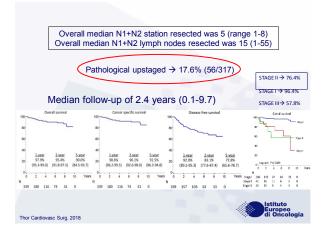
Robert J. Cerfolio, MD, FACS, FCCP, Ayesha S. Bryant, MD, MSPH, Loki Skylizard, MD, and Douglas James Minnich, MD, FACS J Thorac Cardiovasc Surg, 2011

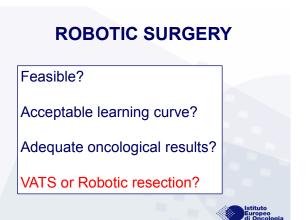
	Robotic operation (N = 106)	Rib- and nerve-sparing thoracolomy (N = 318)	P value
Estimated blood loss (mL, median ± SD)	30 ± 26	90 ± 22	.03
Operative time (b, median ± SD)	2.2 ± 1.0	1.5 ± 0.8	<.001
No. of mediastinal (N2) lymph node stations removed (median)	5	5	>.999
No. of mediastinal (N2) lymph nodes removed (median)	12	11	.906
No. of N1 lymph node stations removed (median)	,		>,999
No. of N1 lymph node removed (median)	5	4	.89
Chest tube duration (d, median and range)	1.5 (1-6)	3.0 (1-67)	<.001
Hospital stay (d, median and range)	2.0 (1-7)	4.0 (1-67)	.01
Morbidity (no.)	28 (27%)	120 (38%)	.05
Operative mortality (no.)	0	11 (3%)	.11
Verbal pain score 3 wk postoperatively (median and range)	2.5 (0-7)	4.4 (0-8)	.04

No difference in lymph node dissection




THORACIC: LUNG CANCER


Objective: Our objective is to report the world's largest series with the longe follow-up of robotic lobectomy for non-small cell lung cancer (NSCLC). Methods: This was a multi-institutional retrospective review of a con ries of patients from 4 institutions' prospective robotic databases. Results: There were 1339 patients (men 55%, median age 68 years) operative time was 136 minutes, median number of lymph nodes v stations and 1 N1), median blood loss was 50 cc, and 4 (0.005%) pati 4 (2%). Med 30-day


ABSTRACT

"La volpe e l'uva" di Esopo

Una volpe affamata vide dei grappoli d'uva che pendevano da un pergolato, e tentò di afferrarli. Ma non ci riuscì. "Robaccia acerba!" disse allora tra sé e sé; e se ne andò. Così, anche fra gli uomini, c'è chi, non riuscendo per incapacità a raggiungere il suo intento, ne dà la colpa alle circostanze.

ROBOT vs VATS

ADVANTAGES

- 1 Intuitive movements
- 2. Tremor filtration
- 3. Increased degrees of freedom
- 4. Motion scaling
- 5. Stereoscopic vision
- 6. Stable camera platform
- 7. Equivalence between the dominant and non-dominant 6. Possible delayed response by hands
- 8. Motion analysis

DISADVANTAGES

- 1. Costs
- Loss of tactile feedback 2. 3. Limited instrumentation
 - available
- 4. Significant system set-up time
- 5. Need of at least one experienced assistant
 - the surgeon in case of catastrophic event

9. Eye-hand-target alignment
 10. Possibly shorter learning curve

Robot-Assisted Thoracoscopic Surgery versus Video-Assisted Thoracoscopic Surgery for Lung Lobectomy: Can a Robotic Approach Improve Short-Term Outcomes and Operative Safety?

Julien Mahieu, Philippe Rinieri Michael Buhenh eim, Emile Calenda, Jean N

	V Group (n = 28)	R Group (n = 28)	<i>p</i> ·Vah
Preincision time, median (min)	60	80	< 0.000
Operative time, median (min)	185	190	0.55
Length of stay, median (d)	7	6	0.40
Conversion, no. (%)	5 (17.8)	3 (10.7)	0.5
Emergency, no.	4	1	
Other reasons, no.	1	2	
Morbidity, no. (%)	12 (42.8)	14 (50)	0.9347
Grade I (Clavien-Dindo Classification)	8 (28.5%)	8 (28.5%)	
Grade ≥ III (Clavien-Dindo Classification)	4 (14%)	6 (21.4%)	
Grade IIIA	4	1	
Grade III8	0	2	
Grade IV	0	3	
30-day mortality, no.	0	0	
Intraoperative bleeding, median (mL)	200	100	0.1147
Drainage time, median (d)	5	5	0.7897
Drainage > 7 d, no. (%)	5 (17.8)	7 (25)	0.7458

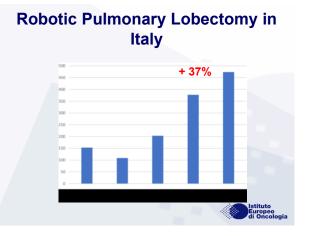
lki, Christophe Peillon, Jean-Marc

The Prevalence of Nodal Upstaging During Lung Resection in Early Stage Non-Small (Cancer Jennifer L Wilson, MD, Brian E. Loule, MD, Robert J. Certolio, MD, Bernard J. Park, MD Raph W. Aye, MD, Ahmed Abdel-Razek, MD, Ayesha Bryant, MD, Alexander	Cell Lung
302 patients Pathologic nodal upstaging occurred in 33 patients (10.5 pN1 6.6%; pN2 4.3%	3%)
Hilar (pN1) upstaging Robot Vats Thoracotomy cT1a 3.5 5.2 7.5 cT1b 8.6 7.1 8.8 cT2a 10.8 5.7 11.5	
The rate of nodal upstaging for robotic	resection

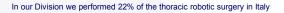
The rate of nodal upstaging for robotic resection appears to be superior to VATS and comparable to thoracotomy

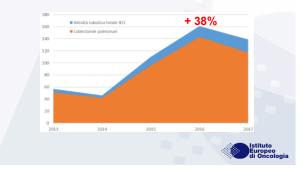
CONCLUSIONS

- Modern medicine and diffusion of screening programs require less invasive treatment for very early stage lung cancers or mediastinal diseases
- Robotic lobectomy with lymph node dissection is safe and associated with significantly shorter postoperative hospitalization than open surgery
- Most disadvantages of the robotics will be overcome when technological advances improves instrumentation and extended use of robotics reduces costs



Europeo di Oncologia


400 300 200


Robotic Thoracic Surgery in Italy

Robotic Thoracic Surgery at IEO

