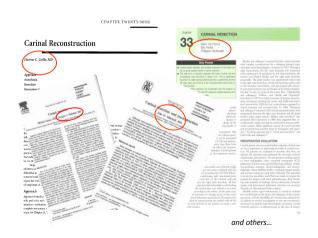


CARINAL RESECTION: WHICH APPROACH

Prof. Lorenzo Spaggiari Departement of Thoracic Surgery European Institute of Oncology University of Milan, Italy

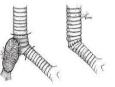
INTRODUCTION

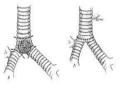

THE MOST CHALLENGING AREA OF AIRWAY RESECTION AND RECONSTRUCTION.

VARIABILITY OF RESECTION AND RECONSTRUCTION ACCORDING TO THE EXTEND OF THE LESION.

NO SINGLE IDEAL TECHNIQUE FOR RECONSTRUCTION.

Hermes C. Grillo




DEFINITION

"Resection of the trachea-bronchial bifurcation"

With lung resection

Without lung resection

INDICATION

NSCLC (N0 or single N2 post induction CT) Primitive airway tumors Benign lesions invading the carina

TENSION FREE ANASTOMOSIS

the tumor should not extend beyond 2 cm of the lower trachea or more than 1.5 cm of the opposite main bronchus or the distance between the lower trachea and the opposite bronchus is not more than 4 cm

EO

CONTRAINDICATION

Impairment respiratory or cardiac function

Extension of the tumor that hamper a tension free anastomosis

Multiple N2 or N3 lymph node stations

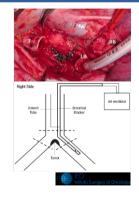
Distant metastasis

Preoperative RT more than 45 Gy

WORK UP

CT scan Pet scan fdg FBS EBUS TBNA and/or Mediastinoscopy for NSCLC

MULTIDISCIPLINARY MEETING


ANESTHESIA

Cross-field ventilation

HFJV

ECMO

Spontaneous ventilation

APPROACH

Right thoracotomy (IV space) → Right-sided lesions requiring a CR with pulmonary resection

Left thoracotomy \rightarrow left tracheal sleeve PN (only for very limited tracheal resection)

APPROACH

Sternotomy \rightarrow CR without pulmonary resection and left tracheal sleeve PN

APPROACH

VATS or RATS \rightarrow only few cases in literature

J Thorac Cardiovasc Surg 2018 ic surgery for tracheal and carinal resection uction under spontaneous ventilation

SV-VATS is a feasible procedure in tracheal and carinal resection tion in highly selected patients. It can be a valid absensive to mbated VATS for airway surgery. (J Thome Cardiovasc Surg

Jiang, MD, PhD,² Jun Liu, MD, PhD,⁴ Diego Gonzalez-Rivas, MD,¹ Yaren Shargall, MD,¹ n Koh, MD, PhD,⁴ Wenlong Shao, MD, PhD,⁴ Qinglong Dong, MD,¹ Lixia Liang, MD,¹ and

Ann Thorac Surg 2016 Video-Assisted Thoracic Surgery Resection and Reconstruction of Carina and Trachea for Malignant or Benign Disease in 12 Patients: Three Centers' Experience in China

Jingpei Li, MD," Wei Wang, MD," Long Jiang, MD," Weiqiang Yin, MD, Jun Liu, MD, Wenlong Shao, MD, Haruhang Chen, MD, Kong-Leong Ang, PhD FRCSEd (C-Th), Wenjie Jian, MD, Mingqiang Kang, MD, and Jianxing He, MD, PhD ettated Hespital of Gaargabou Medical University, Gaargabo ton, National Clotical Research Contex for Respiratory Disease for Disease of Qingdar University. On et-

want five 8 carinal resections

Editorial

Awake minimal invasive carinal resection-tightrope walking in thoracic surgery?

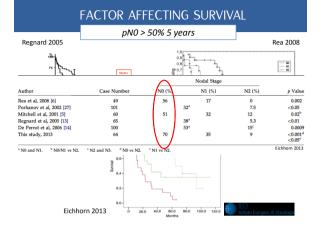
Thomas Schweiger, Walter Klepetko, Konrad Hoetzenecker

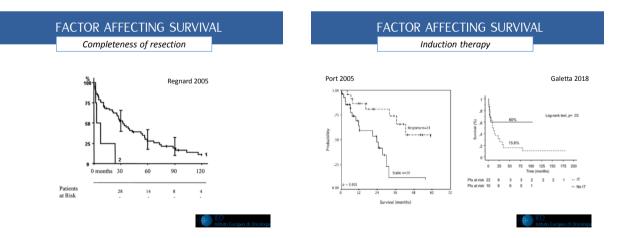
Almost 4 hours operation time, three incisions, 12 days of postoperative fixation of the chin \rightarrow real benefit?

No clear evidence that the technique itself results in more precise surgical performance, enhanced oncological radicality or improved bronchial healing.

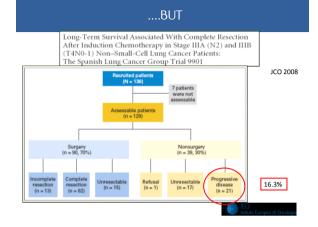
How much of tension between the tracheal and bronchial stump in a long distance carinal resection could still be handled with this technique?

Ventilation is limited to the delivery of high-flow oxygen through a laryngeal mask \rightarrow what if this ventilation is insufficient? Record and secretions collecting in the airways cannot be suctioned in awake patients → vagal stimulation


3


CARINAL RESECTION WITH LUNG

Performed in case of NSCLC involving the origin of the main bronchus (right or left) and/or the carina



INDUCTION THERAPY

- Small number of extended resections for too advanced disease
- High rate of exploratory thoracotomy
- · High rate of positive margins after resection
- High rate of systemic recurrences after extended resection
- Unsatisfactory survival outcomes

	INDUCTIO	N THERAPY	
	Personal e	xperience	
1) Less than	0.5 cm		NOT
2) Carina an	d SVC		YES
	of N2 disease Iding station 2)		YES

CARINAL RESECTION WITH LUNG

	YEAR	PERIOD	N	N/YEAR	CANCER
Grillo*	1999	'62 – '96 (35 years)	135 (143)	4.7	87.4%
Dartevelle**	2017	'81-2011 (30 years)	138	4.6	100%

* Mitchell, JTCVS 1999

** Dartevelle, Gen Thorac Cardiovasc Surg 2017

GRILLO, 1999

w	ITH LUNG RESECTION	WITHOUT LUNG RESECTION
R pn	30.7% (1,25 pt/yr)	36.3% (1.5 pt/yr)
Lpn	9% (0.37 pt/yr)	
Lob	7.7% (0.31 pt/yr)	

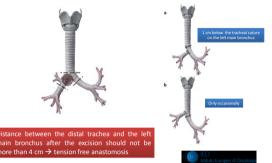
one left tracheal sleeve pn every 3 yr !!! one carinal lobectomy every 3 yr !!!

DARTEVELLE, 2017

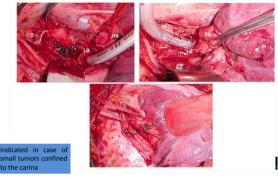
WITH LUNG RESECTION	WITHOUT LUNG RESECTION				
R pn 89.1% (4.1 pt/yr)	2.2% (0.1 pt/yr)				
L pn 2.8% (0.1 pt/yr)					
Lob 5.8% (0.3 pt/yr)					

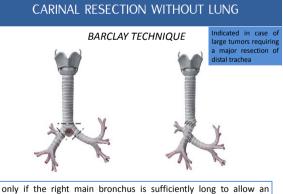
one left tracheal sleeve pn every 10 yr !!! one carinal lobectomy every 3 yr !!!

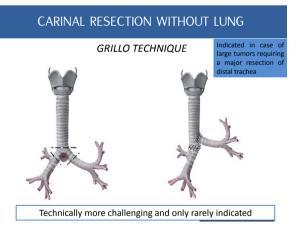
CARINAL RESECTION WITH LUNG Left tracheal sleeve pneumonectomy Mitchell 1999 57 13/44 0.37 16R;31L Regnard 2005 60 2/58 0.1 8.5 Roviaro 2006 53 1/52 0.47 7.5 De Perrot 2006 103 7/96 0.3 3R;0L 2008 49 1/48 0.43 6.1 Rea Eichhorn 2013 64 3/61 0.27 3


CARINAL RESECTION WITH LUNG

Right tracheal sleeve pneumonectomy

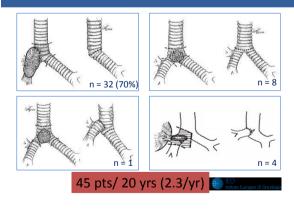

CARINAL RESECTION WITH LUNG


Carinal resection with right upper lobectomy or bilobectomy


CARINAL RESECTION WITHOUT LUNG

NEO-CARINA

only if the right main bronchus is sufficiently long to allow an adequate cross-field ventilation during the end-to-side anastomosis


CARINAL RESECTION WITHOUT LUNG

ESCHAPASSE OR REVERSE BARCLAY TECHNIQUE

OUR EXPERIENCE

ANASTOMOSIS - SUTURE

Two running 3/0 polipropylene sutures

TRACHEGORORCHALS SLEEPE RESECTION WITH THE USE OF A CONTINUOUS AMASTOMOSIS TOTAL TO FOR HUMPRED CONSECUTIVE CASES CONTINUES AND TRACE Provide the Continue of the Continue

ANASTOMOSIS - OUTCOME

Personal experience

COMPLICATIONS

								Тарі	as 2015
Author, Year		Mortality,	Morbidity,	Bronchopleural Fistula/ Dehiscence/ Ischemia	Anastomotic Compli Bronchovascular Fistula	stenosis	Local Recurrence	Empyema, %	5-y
Carinal resection	n	78	7	schemia	Pistula	stenosis	Recurrence		Survival, %
Tedder et al. ⁸ 1992	1915	20.9	-	10.1	2.9	-	4.2	8.6	-
Mitchell et al. ¹⁰ 1999*	134	12.7	38.8	17.2	-	-	-	2.2	-
Mitchell et al. ¹⁸ 2001*	60	15.0	45.0	16.7 ^b	-	-	3.3	-	42
Porhanov et al, ¹⁹ 2002	231	16.0	35.5	21.6	-	7.4	5.0	14.7	25
Regnard et al, ²⁰ 2005	65	7.7	50.8	10.8	-	4.6	-	7.7	27
de Perrot et al, ²¹ 2006	119	7.6	47.1	10.1	-	2.5	4.2	5.0	44
Roviaro et al, ²² 2006	53	7.5	11.3	3.8	-	-	-	1.9	33
Eichhorn et al, ²³ 2013	64	3.1	40.6	10.9	-	-	-	10.9	31

COMPLICATIONS

"MASSIVE TRACHEAL ISCHEMIA WITH ANASTOMOSIS" DEISCENCE

CONCLUSIONS

Carinal resection is feasible but challenging

Low rate of postoperative morbidity and mortality

> in specialized center with high experience

Excellent survival results > best candidate N0-N1

EO

CONCLUSIONS

ONCOLOGICAL PRINCIPLES IN LUNG CANCER TREATMENT MUST BE RESPECTED... ...PATIENT MUST SURVIVE SURGICAL RESECTION !!!

